A Path-Precise Analysis for Property Synthesis
نویسندگان
چکیده
Recent systems such as SLAM, Metal, and ESP help programmers by automating reasoning about the correctness of temporal program properties. This paper presents a technique called property synthesis, which can be viewed as the inverse of property checking. We show that the code for some program properties, such as proper lock acquisition, can be automatically inserted rather than automatically verified. Whereas property checking analyzes a program to verify that property code was inserted correctly, property synthesis analyzes a program to identify where property code should be inserted. This paper describes a path-sensitive analysis that is precise enough to synthesize property code effectively. Unlike other path-sensitive analyses, our intra-procedural path-precise analysis can describe behavior that occurs in loops without approximations. This precision is achieved by computing analysis results as a set of path machines. Each path machine describes assignment behavior of a boolean variable along all paths precisely. This paper explains how path machines work, are computed, and are used to synthesize code. A Path-Precise Analysis for Property Synthesis Sean McDirmid and Wilson C. Hsieh School of Computing, University of Utah 50 S. Central Campus Dr. Salt Lake City, Utah USA {mcdirmid,wilson}@cs.utah.edu
منابع مشابه
Chemico- thermal synthesis of nano-structured cobalt with distinct magnetic property
The synthesis of nano- structured cobalt through a controlled chemical process followed by heat treating at various temperatures is studied. The product is characterized by ICP, XRD, FESEM , and TEM, indicating that the as- synthesized particles have an amorphous structure with 1.76 for Co/B ratio, an average size of 50 nm. The transformation of intermediate phases into single phase nano- cryst...
متن کاملMWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property
In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...
متن کاملBranching-time logics with path relativisation
We define extensions of the full branching-time temporal logic CTL∗ in which the path quantifiers are relativised by formal languages of infinite words, and consider its natural fragments obtained by extending the logics CTL and CTL in the same way. This yields a small and two-dimensional hierarchy of temporal logics parametrised by the class of languages used for the path restriction on one ha...
متن کاملBiosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications
A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...
متن کاملBiosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications
A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic...
متن کامل